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The problem of reliable control for T-S fuzzy time-delayed systems
is investigated in this paper. A more practical and general actua-
tor-fault-model is proposed by assuming that actuators fault obeys
a certain probabilistic distribution. In order to get less conserva-
tive results, the state-delay is segmentalized into several continu-
ous equivalent subintervals in constructing the Lyapunov function
and stochastic fault information is also introduced in deriving the
results. Sufficient conditions for the existence of reliable control-
ler are expressed by a set of linear matrix inequalities. Illustrative
examples are exploited to show the effectiveness of the proposed
design procedures. [DOI: 10.1115/1.4004066]
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1 Introduction

During the past two decades, the study of fault-tolerant control
(FTC) has attracted considerable attention because of the growing
demands for system reliability in a highly automated industrial system
[1–3]. Meanwhile, with the development of fuzzy systems, some reli-
able fuzzy control design methods have appeared in the field of FTC
[1,4–6, and the references therein]. The results cited previously do not
involve state time-delays; however, time-delays often occur in many
dynamic systems such as biological systems, network systems, and so
on. It is shown that the existence of delays usually becomes the source
of instability and deteriorating performance of the systems. In recent
years, some authors have paid their attention to the problem of reli-
able control for nonlinear systems with time-delays by using T-S
fuzzy models [7–9]. For example, Chen and Liu [7] presented
a delay-independent criterion for time-varying delay systems with
actuators faults. In literature [8,9], the reliable fuzzy controller design
problem of T-S fuzzy descriptor systems and nonuniform sampling
system with time-varying delay are proposed, respectively.

Generally, to get less conservative results for time-delayed systems
with actuators failures, the researchers mainly focus on to find a better
method to handle with time-delay and to establish a reasonable actuator
fault model. The existing stability studies for time-delay systems can be
classified into two types: delay-independent stability and delay-depend-
ent stability. The delay-independent stability criterion is not affected by
the size of the delay; on the other hand, the delay-dependent stability
criterion is concerned with the size of the delay and to be less conserva-
tive than the delay-independent case [10–12]. As for actuator fault
model, usually, it is modeled as uFðtÞ ¼ PuðtÞ, where P is a given
scaling factor. In practical systems, the faults, because of actuators
aging, zero shift, electromagnetic interference, nonlinear amplification
in different frequency field, etc., are varying with circumstance and
components themselves in many cases. It will be more reasonable if
the fault scale factor obeys a certain probabilistic distribution in an
interval. To the best of our knowledge, it seems that there are few
results on the actuator failure model satisfying a certain probabilistic
distribution. This motivates us to further investigate the problem.

In this paper, first a new actuator failure model that can meet
practical situations is proposed. Then, the fuzzy reliable controller
with less conservativeness is developed by using the delay-
segment method. Finally, two simulation examples are provided
to show the effectiveness of the proposed approach.

The paper is organized as follows: The system descriptions and
problem formulation are given in Sec. 2. In Sec. 3, a linear matrix
inequality (LMI)-based method for the design of reliable fuzzy
controllers is presented. Numerical examples are provided to dem-
onstrate the effectiveness of the proposed method in Sec. 4.
Finally, the conclusion is drawn in Sec. 5.

2 Problem Formulation

Consider a continuous-time T-S fuzzy system with a constant
state delay. The ith rule of the model is described by the following
if-then form

Ri : If h1ðtÞ is Wi
1 and… and hnðtÞ is Wi

n; then

_xðtÞ ¼ AixðtÞ þ Adixðt� sÞ þ BiuðtÞ
xðtÞ ¼ /ðtÞ t 2 ½�s; 0� (1)

where xðtÞ 2 Rn is the state vector and uðtÞ 2 Rm is the input
vector; the initial condition, /ðtÞ, is a continuous and differential
vector valued function of t 2 ½�s; 0�; Wj

i is the fuzzy set;
hjðtÞðj ¼ 1; 2;…; nÞ is the premise variables; Ai;Adi(i 2 f1; 2;…;

rg ¼D S), and Bi are constant matrices with compatible dimensions.

By using the center-average defuzzifier, product inference, and
singleton fuzzifier, the global dynamics of T-S fuzzy system (1)
can be expressed as

_xðtÞ ¼
Pr
i¼1

hi AixðtÞ þ Adixðt� sÞ þ BiuðtÞ½ �

xðtÞ ¼ /ðtÞ t 2 ½�s; 0�

8<: (2)

where hi ¼ xiðhðtÞÞ
�Pr

i¼1 xiðhðtÞÞ; xiðhðtÞÞ ¼
Qg

j¼1 Wi
jðhjðtÞÞ,

and Wi
jðhjðtÞÞ is the membership value of hjðtÞ in Wi

j , some basic

properties of hðhjðtÞÞ are hiðhðtÞÞ � 0;
Pr

i¼1 hiðhðtÞÞ ¼ 1.

Then the following fault model is adopted, with considering the
actuators failures, for this study

uFðtÞ ¼
Xr

j¼1

NuðtÞ ¼
Xm

i¼1

Xr

j¼1

hjniCiKjxðtÞ (3)

where, N ¼ diagfn1;…; nmg with niði ¼ 1;…;mÞ are m unrelated

random variables taking values on interval ½0 �n�, where �n � 1. The
mathematical expectation and the variance of ni are li and r2

i ,

respectively, and Ci ¼ diagf0;…; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0;…; 0|fflfflffl{zfflfflffl}
m�i

g. For convenience,

we define �N ¼ diagfl1;…; lmg and D ¼ diagfr1;…; rmg.
Kj 2 Rm�n are feedback gain matrices to be determined.

Remark 1. By introducing a random ni to describe the actuators
failure in Eq. (3), it satisfies a certain probabilistic distribution in
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an interval 0; �n
� �

with �n � 1: For ni ¼ 0; it means complete fail-
ure of the i th actuator; for ni ¼ 1; it means the i th actuator is in
good working condition; for 0 < ni < 1; it means partial failure of
the i th actuator; for ni > 1; it means the actuator-amplifier with
forward drift. It should be noted that, in many cases, the gain of
actuators could be larger than normal cases by reasons of the
surrounding influence or actuator-amplifiers themselves; therefore,
the mathematical expectation li of random variance ni, similar to the
scaling factor in Ref. [13], should be defined as 0 < li < �li, where
�l � 1. Furthermore, ri denotes the gain of actuators fluctuation lev-
els because of influence of all the factors acting on actuators.

Combining Eqs. (2) and (3), we obtain the following closed-
loop system as follows

_xðtÞ ¼
Xr

i¼1

Xr

j¼1

hihj½AijxðtÞ þ BijxðtÞ þ Adixðt� sÞ� (4)

where Aij ¼ Ai þ Bi
�NKj and Bij ¼ BiðN� �NÞKj.

Definition 1. For a given function V : Cb
F0
ð½�s2; 0�;RnÞ � S, its

infinitesimal operator L [14] is defined as

LVðxtÞ ¼ lim
D!0þ

1

D
½EðVðxtþDjxtÞ � VðxtÞÞ� (5)

where Ef�g stands for the expectation.

3 Main Result

In this section, we aim to develop an innovative approach to guar-
antee the system (4) is exponentially mean-square stable (EMSS).
The controller Kj could be solved from the following results.

THEOREM 1. For given matrices Kj, and scalars s; d, the system (4) is
EMSS if there exists matrices P > 0;Qdn�dn > 0;Ri > 0, and
Mlij;Nlijðl ¼ 1;…; d þ 1; i; j 2 SÞ such that the following LMIs hold

Pii ¼
Wii �
P21

ii P22

� �
< 0 (6)

Pij ¼
Wij þWji �

�P21
ij

�P
22

" #
< 0; i < j 2 S (7)

where

Wij ¼
W11

ij þ Uþ UT � �
�MT �dR1 �
�NT 0 �R2

264
375

W11
ij ¼

In�n

0dn�n

� �
AþAT In�n

0dn�n

� �
þ

Q 0dn�n

0n�dn 0n�n

� �
�

0n�dn 0n�n

Idn�dn 0dn�n

� �
Q 0dn�n

0n�dn 0n�n

� �
0n�dn 0n�n

Idn�dn 0dn�n

� �T

A ¼ ½PAij 0 … 0|fflffl{zfflffl}
d�1

PAdi�

U ¼ ½Mij þ Nij �Mij 0…0|ffl{zffl}
d�2

�Nij�

P21
ii ¼ ½K

T
ii Cii�T ;P22 ¼ diagf�R � eRg

�P21
ij ¼ ½K

T
ij KT

ji Cij Cji�T

�P
22 ¼ diagf�R �R � eR � eRg

Mij ¼ ½M1ij… Mðdþ1Þij�;
Nij ¼ ½N1ij … Nðdþ1Þij�
Kij ¼ ½RAij 0 … 0|fflfflffl{zfflfflffl}

d�1

RAdi 0 0�

Cij ¼ C1ij;…; Clij … Cmij½ �
Clij ¼ rlRBiClKj 0 … 0½ �T l 2 ½1;m�

R ¼ s2

d
R1 þ s2R2; eR ¼ diagfR;…;R|fflfflfflfflffl{zfflfflfflfflffl}

m

g

Proof. Construct a Lyapunov–Krasovskii functional candidate as

VðxtÞ ¼ xTðtÞPxðtÞ þ
ðt

t�s
d

nTðsÞQnðsÞds

þ s
ð0

�s
d

ðt

tþs

_xTðvÞR1xðvÞdvds

þ s
ð0

�s

ðt

tþs

_xTðvÞR2 _xðvÞdvds (8)

where

nðtÞ ¼ xTðtÞ xTðt� s
dÞ… xTðt� ðd�1Þs

d Þ
h iT

From the definition of N, we can easily know E½BiðN� �NÞKj� ¼ 0.
Also, we can have

E
Xr

i¼1

Xr

j¼1

Xr

k¼1

Xr

l¼1

hihjB
T
ijRBkl

( )

�
Xr

i¼1

Xr

j¼1

Xm

l¼1

hihjr
2
l KT

j CT
l BT

i RBiClKj

Employing the free-weighting matrix method [15], and the infini-
tesimal operator (5) for system (4), we have

LVðxtÞ

¼ E
Xr

i¼1

Xr

j¼1

2hihjx
TðtÞP½AijxðtÞ þ Adixðt� sÞ�

(

þ nTðtÞQnðtÞ � nTðt� s
d
ÞQnðt� s

d
Þ � s

ðt

t�s
d

_xTðsÞR1 _xðsÞds

� s
ðt

t�s
_xTðsÞR2 _xðsÞdsþ _xTðtÞ s2

d
R1 þ s2R2

� �
_xðtÞ

þ
Xr

i¼1

Xr

j¼1

2hihjf
TðtÞMij xðtÞ � xðt� s

dÞ �
Ð t

t�s
d

_xðsÞds
h i

þ
Xr

i¼1

Xr

j¼1

2hihjf
TðtÞNij xðtÞ � xðt� sÞ �

Ð t
t�s _xðsÞds

� �)

� E
Xr

i¼1

Xr

j¼1

hihj xTðtÞ
Xm

l¼1

r2
l KT

j CT
l BT

i RBiClKj

((
xðtÞ

þ xTðtÞAT
ijRAijxðtÞ

þ xTðt� sÞAT
diRAdixðt� sÞ þ 2xTðtÞAT

ijRAdixðt� sÞ

� d

ðt

t�s
d

_xTðsÞdsR1

ðt

t�s
d

_xðsÞds�
ðt

t�s
_xTðsÞdsR2

ðt

t�s
_xðsÞds

)

where fðtÞ ¼ xTðtÞ xTðt� s
dÞ xTðt� 2s

d Þ � � � xTðt� sÞ
� �T

Hence

LVðxtÞ

� E
Xr

i¼1

Xr

j¼1

hihjg
TðtÞ Wij þ KT

ijRKij þ Cij
eRCT

ij

n o
gðtÞ

( )

¼ E
Xr

i¼1

h2
i g

TðtÞ Wii þ KT
iiRKii þ Cii

eRCT
ii

n o
gðtÞ

(

þ
Xr

i;j¼1

X
i<j

hihjg
TðtÞ Wij þWji þ KT

ijRKij þ KT
jiRKji

n
þ Cij

eRCT
ij þ Cji

eRCT
ji

o
gðtÞ
o

(9)
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where

gðtÞ ¼ fTðtÞ
ðt

t�s
d

_xTðsÞds

ðt

t�s
_xTðsÞds

" #T

Using Schur complements, it can be shown that Eqs. (6) and (7)
are the sufficient conditions for guaranteeing

LVðxtÞ < 0 (10)

Similar to the method of Ref. [16], we can conclude that the
closed-loop systems (4) is EMSS. This completes the proof.

Remark 2. The idea of delay partitioning has appeared in a few
literatures, for example, Refs. [10–12 and the references therein],
which trigger us for further research on time-delay with new ways
and its application to the problem of reliable control. In Eq. (8), d
state-vectors are augmented in nðtÞ, that is, ½0 s� is segmented into
d intervals. Although it brings more free matrix, it can lead to sig-
nificantly less conservative results, which will be illustrated in
Sec. 4.

In the following, we are seeking to design the reliable controller
gain Kj based on Theorem 1.

THEOREM 2. For given scalars s1; s2, the system (4) is EMSS if
there exist positive definite matrices X; ~Qdn�dn; ~Ri, and
~Mlij; ~Nlij;Yjðl ¼ 1;…; d þ 2; i; j 2 SÞ; such that the following LMIs

(11)–(12) hold. Furthermore, the reliable controller gain Kj ¼ YjX
�1.

~Pii ¼
~Wii �
~P21

ii
~P

22

� �
< 0 (11)

~Pij ¼
~Wij þWij �

P̂21
ij P̂22

" #
< 0; i < j 2 S (12)

where

~Wij ¼

~W11
ij þ ~Uþ ~U

T � �

� ~M
T �d ~R1 �

� ~N
T

0 � ~R2

2664
3775

~W11
ij ¼

In�n

0dn�n

� � eAþ eAT In�n

0dn�n

� �
þ

~Q 0dn�n

0n�dn 0n�n

" #

�
0n�dn 0n�n

Idn�dn 0dn�n

� � ~Q 0dn�n

0n�dn 0n�n

" #
0n�dn 0n�n

Idn�dn 0dn�n

� �T

eA ¼ ½AiX þ BiNYj 0 …0|ffl{zffl}
d�1

AdiX�

~U ¼ ½ ~Mij þ ~Nij � ~Mij 0 … 0|fflffl{zfflffl}
d�2

� ~Nij�

~P21
ii ¼ ½~K

T
ii
eCii�T ; ~P

22 ¼ eRmþ1

P̂21
ij ¼ ½~K

T
ij

~KT
ji
eCij
eCji�T ; P̂

22 ¼ eR2mþ2

~Mij ¼ ½ ~M1ij … ~Mðdþ1Þij�; ~Nij ¼ ½ ~N1ij … ~Nðdþ1Þij�
~Kij ¼ AiX þ BiNYj 0 � � � 0 AdiX 0 0½ �eCij ¼ C1ij;…; Clij … Cmij½ �; eClij ¼ rlBiClYj 0 … 0½ �T

�R ¼ s2

d
~R1 þ s2 ~R2eRk ¼ diagf�2eX þ e2 �R;…;�2eX þ e2 �R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k

g

Proof. The proof is cutoff due to space limitation. Contact the
authors for the detailed proof.

Remark 3. From Theorem 2, we can see that the criteria depend
on not only the state time-delay s, but also the fault-distribution
(li;ri) and the number of d.

4 Numerical Examples

In this section, two examples are used to illustrate the merits
and effectiveness of the results proposed in this paper. The first
example is taken from Ref. [17], from which the advantages of
our delay-segment-dependent stability criterion can be shown.
The second one, from Ref. [18], is used to show the systems per-
formance when the actuators suffering probabilistic fault by using
the proposed reliable controller.

Example 1. Consider T-S fuzzy system (2) with the parameters
as following [17]

A1 ¼
�2 0:1
0 �0:9

� �
; A2 ¼

�1 0:5
0 �1

� �
Ad1 ¼ �1 0n1 �1½ �; Ad2 ¼

�1 0

0:1 �1

� �
; B1 ¼ B2 ¼ 0

Table 1 shows the tendency of the upper bound of s by using
the proposed method closed to the real upper bound with the
increasing segment d of s. Table 2 lists the results the maximum
allowable delay bounds derived from various methods including
Tian and Peng [19], Chen et al. [20], Peng et al. [21], and the one
proposed in this paper. It is seen from Table 2 that the results
obtained from our method are less conservative than those
obtained from existing methods.

Example 2. Consider the following truck-trailer model with the
following parameters [18]

A1 ¼
0:5091 0 0

�0:5091 0 0

0:5091 �4 0

264
375; A2 ¼

0:5091 0 0

�0:5091 0 0

0:8102 �6:3662 0

264
375

Ad1 ¼
0:2182 0 0

�0:2182 0 0

0:2182 0 0

264
375; Ad2 ¼

0:2182 0 0

�0:2182 0 0

0:3472 0 0

264
375; s ¼ 5

B1 ¼ B2 ¼
�1:4286

0

0

264
375

and the fuzzy membership functions are taken as

h1 ¼ 1� 1

1þ expð�3ðhðtÞ=0:5� p=2ÞÞ

� 	
1� 1

1þ expð�3ðhðtÞ=0:5þ p=2ÞÞ

� 	
; h2 ¼ 1� h1

Supposing the actuator fault-distribution is l1 ¼ 0:3, r1 ¼ 0:2, we
can get the “reliable controller” from Theorem 2 with d ¼ 3, and
e ¼ 1: Kr1 ¼ ½6:9355 � 5:7163 0:1170�; Kr2 ¼ ½7:2165 � 7:6963
0:1343�. Also, we can get the “standard controller”, i.e., the systems

Table 1 Upper bound of with increasing (Example 1)

Segment d¼ 2 d¼ 3 d¼ 4 …

s 1.904 1.9633 1.9843 …

Table 2 The maximum allowable delay bound without
uncertainties (Example 1)

Method Maximum allowable s

Tian and Peng [19] 1.5974
Chen et al. [20] (Corollary 1) 1.5974
Peng et al. [21] Corollary 1 1.6341
Corollary 1 (with d¼ 4) 1.9843
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are in normal case, as Ks1 ¼ ½2:0807 � 1:7149 0:0351�; Ks2

¼ ½2:1649 � 2:3089 0:0403�.
With the initial condition given by /ðtÞ ¼ ½0:5p � 0:05p � 2�T

for t 2 ½�5; 0�. Supposing the actuators fault occurs at [4–25 s].
From Figs. 1 and 2, we can observe that when actuators fault
occurs, the closed-loop system with the reliable controller still
operates well and maintains an acceptable level of performance.
However, the system tends to divergent when using standard con-
troller Ks.

5 Conclusion

In this paper, a new practical actuator fault model is proposed.
We concentrate on designing a reliable controller for a class of T-
S fuzzy time-delay systems and presenting a less conservative
method to achieve closed-loop stability, not only when the system

is operating properly but also in the presence of probabilistic actu-
ator failures. Numerical examples are given to illustrate the design
procedures.
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